Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
1.
Biol Trace Elem Res ; 202(1): 210-220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37088826

RESUMO

In leishmaniasis, the protective immunity is largely mediated by proinflammatory cytokine producing abilities of T cells and an efficient parasite killing by phagocytic cells. Notwithstanding a substantial progress that has been made during last decades, the mechanisms or factors involved in establishing protective immunity against Leishmania are not identified. In ancient Indian literature, metallic "bhasma," particularly that of "swarna" or gold (fine gold particles), is indicated as one of the most prominent metal-based therapeutic medicine, which is known to impart protective and curative properties in various health issues. In this work, we elucidated the potential of swarna bhasma (SB) on the effector properties of phagocytes and antigen-activated CD4+ T cells in augmenting the immunogenicity of L. donovani antigens. The characterization of SB revealing its shape, size, composition, and measurement of cytotoxicity established the physiochemical potential for its utilization as an immunomodulator. The activation of macrophages with SB enhanced their capacity to produce nitric oxide and proinflammatory cytokines, which eventually resulted in reduced uptake of parasites and their proliferation in infected cells. Further, in Leishmania-infected animals, SB administration reduced the generation of IL-10, an anti-inflammatory cytokine, and enhanced pro-inflammatory cytokine generation by antigen activated CD4+ T cells with increased frequency of double (IFNγ+/TNFα+) and triple (IFNγ+TNFα+IL-2+) positive cells and abrogated disease pathogeneses at the early days of infection. Our results also suggested that cow-ghee (A2) emulsified preparation of SB, either alone or with yashtimadhu, a known natural immune modulator which enhances the SB's potential in enhancing the immunogenicity of parasitic antigens. These findings suggested a definite potential of SB in enhancing the effector functions of phagocytes and CD4+ T cells against L. donovani antigens. Therefore, more studies are needed to elucidate the mechanistic details of SB and its potential in enhancing vaccine-induced immunity.


Assuntos
Apresentação de Antígeno , Antígenos de Protozoários , Linfócitos T CD4-Positivos , Calotropis , Ouro , Látex , Leishmania donovani , Macrófagos , Ayurveda , Células Th1 , Arsênio , Combinação de Medicamentos , Ouro/administração & dosagem , Ouro/farmacologia , Látex/administração & dosagem , Látex/farmacologia , Chumbo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Linfócitos T CD4-Positivos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Antígenos de Protozoários/imunologia , Células Th1/imunologia , Animais , Camundongos , Células RAW 264.7 , Feminino , Camundongos Endogâmicos BALB C
2.
PLoS One ; 16(11): e0258996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807936

RESUMO

In the midst of numerous setbacks that beclouds the fight against leishmaniasis; a neglected tropical disease, the search for new chemotherapeutics against this disease is of utmost importance. Leishmaniasis is a disease closely associated with poverty and endemic in Africa, Asia, southern Europe and the Americas. It is caused by parasites of the genus Leishmania and transmitted by a sandfly vector. In this study, we evaluated the antileishmanial potency of eighteen pathogen box compounds and elucidated their biosafety and possible mechanisms of action against Leishmania donovani promastigotes and amastigotes in vitro. IC50s range of 0.12±0.15 to >6.25 µg/ml and 0.13±0.004 to >6.25µg/ml were observed for the promastigotes and amastigotes, respectively. We demonstrated the ability of some of the compounds to cause cytocidal effect on the parasites, induce increased production of reactive oxygen species (ROS), disrupt the normal parasite morphology and cause the accumulation of parasites at the DNA synthesis phase of the cell cycle. We recommend a further in vivo study on these compounds to validate the findings.


Assuntos
Antiprotozoários/farmacologia , Ciclo Celular , Leishmania donovani/citologia , Ciclo Celular/efeitos dos fármacos , DNA de Cinetoplasto/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641387

RESUMO

Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells' ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.


Assuntos
Antiprotozoários/farmacologia , Apoptose , Dano ao DNA , Flavonoides/farmacologia , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/patologia , Macrófagos/patologia , Animais , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/genética , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Necrose
4.
Biomed Pharmacother ; 143: 112156, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649333

RESUMO

Visceral leishmaniasis (VL) is caused by a protozoan parasite, Leishmania donovani (L. donovani). It affects around 1-2 million people around the world annually. There is an urgent need to investigate new medicament of it due to difficult method of drug administration, long period of treatment, high cost of the drug, adverse side-effects, low efficacy and development of parasite resistance to the available drugs. Medicinal plants have also been used for the treatment of different diseases in traditional system of medicines due to their holistic effects. The Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland has already started the program for identification of potential medicinal plant and plant products having antileishmanial potential. Keeping all these in consideration, we planned to study the antileishmanial activity of one of the medicinal plant, Embilica officinalis L. (EO) fruit extract. EO fruit extract inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes in dose-dependent manner. EO fruit extract induced morphological and ultrastructural changes in parasites as observed under Electron Microscope. It also induced the oxidative stress, mitochondrial dysfunction, DNA laddering and apotosis-like cell death in parasites. Here, we for the first time reported such a detailed mechanism of action of antileishmanial activity of EO fruit extract. Our results suggested that EO fruit extract could be used for the development of new phytomedicine against leishmaniasis.


Assuntos
Apoptose/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Phyllanthus emblica , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Frutas , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Leishmania donovani/ultraestrutura , Leishmaniose Visceral/parasitologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Phyllanthus emblica/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Tripanossomicidas/isolamento & purificação
5.
Parasitol Res ; 120(8): 2969-2971, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34269870

RESUMO

Here, we report a simple, economic and autoclavable monophasic LGPY medium supplemented with 10% fetal bovine serum (FBS), for routine maintenance of Leishmania donovani promastigotes for laboratory use. In comparison to commercially available M199 and RPMI-1640 media, LGPY has shown approximately seven fold more cell growth. The parasite has been observed to survive in the medium for at least 15 days post-inoculation. The medium also supports long-term sub-passaging of the promastigotes and can also be stored at 4 °C or room temperature for 14 months and 45 days, respectively.


Assuntos
Meios de Cultura , Leishmania donovani , Leishmania donovani/crescimento & desenvolvimento
6.
Cytokine ; 146: 155623, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144446

RESUMO

Conventional therapy of visceral leishmaniasis (VL) remains challenging with the pitfall of toxicity, drug resistance, and expensive. Hence, urgent need for an alternative approach is essential. In this study, we evaluated the potential of combination therapy with eugenol oleate and miltefosine in Leishmania donovani infected macrophages and in the BALB/c mouse model. The interactions between eugenol oleate and miltefosine were found to be additive against promastigotes and amastigotes with xΣFIC 1.13 and 0.68, respectively. Significantly (p < 0.001) decreased arginase activity, increased nitrite generation, improved pro-inflammatory cytokines, and phosphorylated p38MAPK were observed after combination therapy with eugenol oleate and miltefosine. >80% parasite clearance in splenic and hepatic tissue with concomitant nitrite generation, and anti-VL cytokines productions were observed after orally administered miltefosine (5 mg/kg body weight) and eugenol oleate (15 mg/kg body weight) in L. donovani-infected BALB/c mice. Altogether, this study suggested the possibility of an oral combination of miltefosine with eugenol oleate against visceral leishmaniasis.


Assuntos
Citocinas/metabolismo , Eugenol/uso terapêutico , Imunidade , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Óxido Nítrico/biossíntese , Fosforilcolina/análogos & derivados , Administração Oral , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Interações Medicamentosas , Quimioterapia Combinada , Eugenol/administração & dosagem , Eugenol/farmacologia , Feminino , Imunidade/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Leishmania donovani/ultraestrutura , Leishmaniose Visceral/parasitologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/parasitologia , Macrófagos/ultraestrutura , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Parasitos/imunologia , Parasitos/ultraestrutura , Fosforilação/efeitos dos fármacos , Fosforilcolina/administração & dosagem , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Cell Biochem ; 122(10): 1413-1427, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34101889

RESUMO

Adenosine 3',5'-cyclic monophosphate (cAMP) is a stress sensor molecule that transduces the cellular signal when Leishmania donovani moves from insect vector to mammalian host. At this stage, the parasite membrane-bound receptor adenylate cyclase predominantly produces cAMP to cope with the oxidative assault imposed by host macrophages. However, the role of soluble adenylate cyclase of L. donovani (LdHemAC) has not been investigated fully. In the present investigation, we monitored an alternative pool of cAMP, maintained by LdHemAC. The elevated cAMP effectively transmits signals by binding to Protein Kinase A (PKA) present in the cytosol and regulates antioxidant gene expression and phosphorylates several unknown PKA substrate proteins. Menadione-catalyzed production of reactive oxygen species (ROS) mimics host oxidative condition in vitro in parasites where cAMP production and PKA activity were found increased by ~1.54 ± 0.35, and ~1.78 ± 0.47-fold, respectively while expression of LdHemAC gene elevated by ~2.18 ± 0.17-fold. The LdHemAC sense these oxidants and became activated to cyclize ATP to enhance the cAMP basal level that regulates antioxidant gene expression to rescue parasites from oxidative stress. In knockdown parasites (LdHemAC-KD), the downregulated antioxidant genes expression, namely, Sod (2.30 ± 0.46), Pxn (2.73 ± 0.15), Tdr (2.7 ± 0.12), and Gss (1.57 ± 0.15) results in decreased parasite viability while in overexpressed parasites (LdHemAC-OE), the expression was upregulated by ~5.7 ± 0.35, ~2.57 ± 0.56, ~4.7 ± 0.36, and ~2.4 ± 0.83, respectively, which possibly overcomes ROS accumulation and enhances viability. Furthermore, LdHemAC-OE higher PKA activity regulates phosphorylation of substrate proteins (~56 kDs in membrane fraction and ~25 kDs in the soluble fraction). It reduced significantly when treated with inhibitors like DDA, Rp-cAMP, and H-89 and increased by ~2.1 ± 0.28-fold, respectively under oxidative conditions. The LdHemAC-KD was found less infective to RAW 264.7 macrophages and more prone to oxidative damage as compared to LdHemAC-OE and control parasites. Together, this study demonstrates mechanistic links among LdHemAC, cAMP, and PKA in parasite survival and invasion under host oxidative condition.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Leishmania donovani/enzimologia , Macrófagos/fisiologia , Oxidantes/farmacologia , Estresse Oxidativo/fisiologia , Adenilil Ciclases/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Oxirredução , Fagocitose , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
FEBS Lett ; 595(4): 548-558, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314040

RESUMO

Leishmania internalize hemoglobin (Hb) via a specific receptor (HbR) for their survival. To identify the Hb-binding domain of HbR, we cloned and expressed several truncated proteins of HbR and determined their ability to bind Hb. Our findings reveal that 90% of Hb-binding activity is retained in HbR41-80 in comparison with HbR1-471 . We synthesized a 40 amino acid peptide (SSEKMKQLTMYMIHEMVEGLEGRPSTVRMLPSFVYTSDPA) corresponding to HbR41-80 and found that it specifically binds Hb. Subsequently, we found that the HbR41-80 peptide completely blocks Hb uptake in both promastigote and amastigote forms of Leishmania and, thereby, inhibits the growth of the parasite. These results demonstrate that HbR41-80 is the Hb-binding domain of HbR, which might be used as a potential therapeutic agent to inhibit the growth of Leishmania.


Assuntos
Antiprotozoários/metabolismo , Hemoglobinas/química , Leishmania donovani/metabolismo , Estágios do Ciclo de Vida/genética , Peptídeos/metabolismo , Proteínas de Protozoários/química , Receptores de Superfície Celular/química , Sequência de Aminoácidos , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Ligação Competitiva , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hemoglobinas/metabolismo , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Leishmania donovani/crescimento & desenvolvimento , Estágios do Ciclo de Vida/efeitos dos fármacos , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
9.
Biomed Res Int ; 2020: 5271657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145352

RESUMO

Posing a threat to the ongoing leishmaniasis elimination efforts in the Indian subcontinent, L. donovani-induced cutaneous leishmaniasis (CL) has been recently reported in many countries. Sri Lanka reports a large focus of human cutaneous leishmaniasis (CL) caused by Leishmania donovani, a usually visceralizing parasite. Enhanced case detection, early treatment, and in-depth understanding of sequalae are required to contain the spread of disease. Visceralizing potential of dermotropic strains has not been fully ruled out. Sri Lankan strains have shown a poor response to established serological assays. The present concern was to develop an in-house serological assay and to determine the seroprevalence of CL for identifying visceralizing potential and its usefulness in enhancing case detection. Crude cell lysate of dermotropic L. donovani promastigotes-based indirect enzyme-linked immunosorbent assay (ELISA) was previously optimized. Assay was evaluated using sera from 200 CL patients, 50 endemic and 50 nonendemic healthy controls, 50 patients with other skin diseases, and 50 patients with other systemic diseases. Seroprevalence and clinicoepidemiological associations were analyzed. Assay was compared with light microscopy (LM) and in vitro culturing (IVC). Cost comparison was carried out. Seroprevalence of CL was 82.0%. The assay had 99.5% specificity, and all healthy controls were negative at 0.189 cut-off. Positive and negative predictive values were 99.4% and 84.7%, respectively. Positivity obtained in ELISA was comparable to LM and higher than that of IVC. Cost per patient was 3.0 USD for both ELISA and LM and 6.0 USD for IVC. Infections occurring in all age groups and both genders demonstrated >75.0% of seropositivity. Patients had lesions with different durations/types/sizes showed >70.0% of seropositivity. Study identified a high seroprevalence of L. donovani-induced CL for the first time, indicating potential for visceralization or transient serological response. This can be used as a second line test in LM-negative CL cases to enhance clinical case detection. Further studies are warranted to examine in-depth correlations, antigen profiles, comparison with other established serological tools, and usefulness in the detection of asymptomatic cases. (National patent LK/P/1/19697).


Assuntos
Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática/normas , Imunidade Humoral , Leishmania donovani/imunologia , Leishmaniose Cutânea/epidemiologia , Pele/imunologia , Adulto , Antígenos de Protozoários/genética , Estudos de Casos e Controles , Feminino , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/patogenicidade , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Masculino , Microscopia , Pessoa de Meia-Idade , Patentes como Assunto , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Pele/parasitologia , Pele/patologia , Sri Lanka/epidemiologia
10.
Sci Rep ; 10(1): 15969, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994468

RESUMO

Leishmania donovani is a trypanosomatidic parasite and causes the lethal kala-azar fever, a neglected tropical disease. The Trypanosomatida are devoid of transcriptional gene regulation and rely on gene copy number variations and translational control for their adaption to changing conditions. To survive at mammalian tissue temperatures, L. donovani relies on the small heat shock protein HSP23, the loss of which renders the parasites stress sensitive and impairs their proliferation. Here, we analysed a spontaneous escape mutant with wild type-like in vitro growth. Further selection of this escape strains resulted in a complete reversion of the phenotype. Whole genome sequencing revealed a correlation between stress tolerance and the massive amplification of a six-gene cluster on chromosome 35, with further analysis showing over expression of the casein kinase 1.2 gene as responsible. In vitro phosphorylation experiments established both HSP23 and the related P23 co-chaperone as substrates and modulators of casein kinase 1.2, providing evidence for another crucial link between chaperones and signal transduction protein kinases in this early branching eukaryote.


Assuntos
Caseína Quinase I/genética , Proteínas de Choque Térmico Pequenas/genética , Leishmania donovani/crescimento & desenvolvimento , Mutação , Regulação para Cima , Caseína Quinase I/metabolismo , Mapeamento Cromossômico , Proteínas de Choque Térmico Pequenas/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Família Multigênica , Fenótipo , Fosforilação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Estresse Fisiológico , Sequenciamento Completo do Genoma
11.
mBio ; 11(4)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723921

RESUMO

Interferon (IFN)-inducible guanylate binding proteins (GBPs) play important roles in host defense against many intracellular pathogens that reside within pathogen-containing vacuoles (PVs). For instance, members of the GBP family translocate to PVs occupied by the protozoan pathogen Toxoplasma and facilitate PV disruption and lytic parasite killing. While the GBP defense program targeting Toxoplasma has been studied in some detail, the role of GBPs in host defense to other protozoan pathogens is poorly characterized. Here, we report a critical role for both mouse and human GBPs in the cell-autonomous immune response against the vector-borne parasite Leishmania donovani Although L. donovani can infect both phagocytic and nonphagocytic cells, it predominantly replicates inside professional phagocytes. The underlying basis for this cell type tropism is unclear. Here, we demonstrate that GBPs restrict growth of L. donovani in both mouse and human nonphagocytic cells. GBP-mediated restriction of L. donovani replication occurs via a noncanonical pathway that operates independent of detectable translocation of GBPs to L. donovan-containing vacuoles (LCVs). Instead of promoting the lytic destruction of PVs, as reported for GBP-mediated killing of Toxoplasma in phagocytic cells, GBPs facilitate the delivery of L. donovani into autolysosomal-marker-positive compartments in mouse embryonic fibroblasts as well as the human epithelial cell line A549. Together our results show that GBPs control a novel cell-autonomous host defense program, which renders nonphagocytic cells nonpermissible for efficient Leishmania replication.IMPORTANCE The obligate intracellular parasite Leishmania causes the disease leishmaniasis, which is transmitted to mammalian hosts, including humans, via the sandfly vector. Following the bite-induced breach of the skin barrier, Leishmania is known to live and replicate predominantly inside professional phagocytes. Although Leishmania is also able to infect nonphagocytic cells, nonphagocytic cells support limited parasitic replication for unknown reasons. In this study, we show that nonphagocytic cells possess an intrinsic property to restrict Leishmania growth. Our study defines a novel role for a family of host defense proteins, the guanylate binding proteins (GBPs), in antileishmanial immunity. Mechanistically, our data indicate that GBPs facilitate the delivery of Leishmania into antimicrobial autolysosomes, thereby enhancing parasite clearance in nonphagocytic cells. We propose that this GBP-dependent host defense program makes nonphagocytic cells an inhospitable host cell type for Leishmania growth.


Assuntos
Fibroblastos/parasitologia , Proteínas de Ligação ao GTP/metabolismo , Interferons/imunologia , Leishmania donovani/crescimento & desenvolvimento , Lisossomos/parasitologia , Células A549 , Animais , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos , Vacúolos
12.
Molecules ; 25(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575379

RESUMO

A screening of Sudanese medicinal plants for antiprotozoal activities revealed that the chloroform and water fractions of the ethanolic root extract of Haplophyllum tuberculatum exhibited appreciable bioactivity against Leishmania donovani. The antileishmanial activity was tracked by HPLC-based activity profiling, and eight compounds were isolated from the chloroform fraction. These included lignans tetrahydrofuroguaiacin B (1), nectandrin B (2), furoguaiaoxidin (7), and 3,3'-dimethoxy-4,4'-dihydroxylignan-9-ol (10), and four cinnamoylphenethyl amides, namely dihydro-feruloyltyramine (5), (E)-N-feruloyltyramine (6), N,N'-diferuloylputrescine (8), and 7'-ethoxy-feruloyltyramine (9). The water fraction yielded steroid saponins 11-13. Compounds 1, 2, and 5-13 are reported for the first time from Haplophyllum species and the family Rutaceae. The antiprotozoal activity of the compounds plus two stereoisomeric tetrahydrofuran lignans-fragransin B2 (3) and fragransin B1 (4)-was determined against Leishmania donovani amastigotes, Plasmodium falciparum, and Trypanosoma brucei rhodesiense bloodstream forms, along with their cytotoxicity to rat myoblast L6 cells. Nectandrin B (2) exhibited the highest activity against L. donovani (IC50 4.5 µM) and the highest selectivity index (25.5).


Assuntos
Antimaláricos/farmacologia , Leishmania donovani/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Rutaceae/química , Tripanossomicidas/farmacologia , Trypanosoma brucei rhodesiense/crescimento & desenvolvimento , Amidas/química , Amidas/farmacologia , Animais , Antimaláricos/química , Lignanas/química , Lignanas/farmacologia , Ratos , Saponinas/química , Saponinas/farmacologia , Tripanossomicidas/química
13.
Int Immunopharmacol ; 85: 106623, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504996

RESUMO

To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.


Assuntos
Antiprotozoários/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Fitoterapia/métodos , Tubérculos/química , Inibidores de Serino Proteinase/farmacologia , Solanum tuberosum/química , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/uso terapêutico , Cricetinae , Citocinas/metabolismo , Modelos Animais de Doenças , Imunomodulação/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/ultraestrutura , Fígado/parasitologia , Camundongos Endogâmicos BALB C , Modelos Animais , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Inibidores de Serino Proteinase/química , Inibidores de Serino Proteinase/isolamento & purificação , Inibidores de Serino Proteinase/uso terapêutico , Baço/imunologia , Baço/parasitologia , Análise de Sobrevida
14.
EBioMedicine ; 55: 102748, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32361248

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) treatment in HIV patients very often fails and is followed by high relapse and case-fatality rates. Hence, treatment efficacy assessment is imperative but based on invasive organ aspiration for parasite detection. In the search of a less-invasive alternative and because the host immune response is pivotal for treatment outcome in immunocompromised VL patients, we studied changes in the whole blood transcriptional profile of VL-HIV patients during treatment. METHODS: Embedded in a clinical trial in Northwest Ethiopia, RNA-Seq was performed on whole blood samples of 28 VL-HIV patients before and after completion of a 29-day treatment regimen of AmBisome or AmBisome/miltefosine. Pathway analyses were combined with a machine learning approach to establish a clinically-useful 4-gene set. FINDINGS: Distinct signatures of differentially expressed genes between D0 and D29 were identified for patients who failed treatment and were successfully treated. Pathway analyses in the latter highlighted a downregulation of genes associated with host cellular activity and immunity, and upregulation of antimicrobial peptide activity in phagolysosomes. No signs of disease remission nor pathway enrichment were observed in treatment failure patients. Next, we identified a 4-gene pre-post signature (PRSS33, IL10, SLFN14, HRH4) that could accurately discriminate treatment outcome at end of treatment (D29), displaying an average area-under-the-ROC-curve of 0.95 (CI: 0.75-1.00). INTERPRETATION: A simple blood-based signature thus holds significant promise to facilitate treatment efficacy monitoring and provide an alternative test-of-cure to guide patient management in VL-HIV patients. FUNDING: Project funding was provided by the AfricoLeish project, supported by the European Union Seventh Framework Programme (EU FP7).


Assuntos
Antiprotozoários/uso terapêutico , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/genética , Transcriptoma , Adulto , Anfotericina B/uso terapêutico , Coinfecção , Endorribonucleases/sangue , Endorribonucleases/genética , Feminino , Regulação da Expressão Gênica , HIV/patogenicidade , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Interleucina-10/sangue , Interleucina-10/genética , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/patologia , Masculino , Fagossomos/metabolismo , Fagossomos/parasitologia , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Receptores Histamínicos H4/sangue , Receptores Histamínicos H4/genética , Recidiva , Serina Proteases/sangue , Serina Proteases/genética , Falha de Tratamento
15.
Artigo em Inglês | MEDLINE | ID: mdl-32457112

RESUMO

T-complex protein-1 (TCP1) is a ubiquitous group II chaperonin and is known to fold various proteins, such as actin and tubulin. In Leishmania donovani, the γ subunit of TCP1 (LdTCP1γ) has been cloned and characterized. It forms a high-molecular-weight homo-oligomeric complex that performs ATP-dependent protein folding. In the present study, we evaluated the essentiality of the LdTCP1γ gene. Gene replacement studies indicated that LdTCP1γ is essential for parasite survival. The LdTCP1γ single-allele-replacement mutants exhibited slowed growth and decreased infectivity in mouse macrophages compared to the growth and infectivity of the wild-type parasites. Modulation of LdTCP1γ expression in promastigotes also modulated cell cycle progression. Suramin, an antitrypanosomal drug, not only inhibited the luciferase refolding activity of the recombinant LdTCP1γ (rLdTCP1γ) homo-oligomeric complex but also exhibited potential antileishmanial efficacy both in vitro and in vivo The interaction of suramin and LdTCP1γ was further validated by isothermal titration calorimetry. The study suggests LdTCP1γ as a potential drug target and also provides a framework for the development of a new class of drugs.


Assuntos
Chaperonina com TCP-1/fisiologia , Leishmania donovani , Actinas , Animais , Antiprotozoários/farmacologia , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/patogenicidade , Macrófagos , Camundongos , Suramina/farmacologia , Tubulina (Proteína)
16.
PLoS One ; 15(4): e0232116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343719

RESUMO

Myosin XXI (Myo21) is a novel class of myosin present in all kinetoplastid parasites, such as Trypanosoma and Leishmania. This protein in Leishmania promastigotes is predominantly localized to the proximal region of the flagellum, and is involved in the flagellum assembly, cell motility and intracellular vesicle transport. As Myo21 contains two ubiquitin associated (UBA)-like domains (UBLD) in its amino acid sequence, we considered it of interest to analyze the role of these domains in the intracellular distribution and functions of this protein in Leishmania cells. In this context, we created green fluorescent protein (GFP)-conjugates of Myo21 constructs lacking one of the two UBLDs at a time or both the UBLDs as well as GFP-conjugates of only the two UBLDs and Myo21 tail lacking the two UBLDs and separately expressed them in the Leishmania cells. Our results show that unlike Myo21-GFP, Myo21-GFP constructs lacking either one or both the UBLDs failed to concentrate and co-distribute with actin in the proximal region of the flagellum. Nevertheless, the GFP conjugate of only the two UBLDs was found to predominantly localize to the flagellum base. Additionally, the cells that expressed only one or both the UBLDs-deleted Myo21-GFP constructs possessed shorter flagellum and displayed slower motility, compared to Myo21-GFP expressing cells. Further, the intracellular vesicle transport and cell growth were severely impaired in the cells that expressed both the UBLDs deleted Myo21-GFP construct, but in contrast, virtually no effect was observed on the intracellular vesicle transport and growth in the cells that expressed single UBLD deleted mutant proteins. Moreover, the observed slower growth of both the UBLDs-deleted Myo21-GFP expressing cells was primarily due to delayed G2/M phase caused by aberrant nuclear and daughter cell segregation during their cell division process. These results taken together clearly reveal that the presence of UBLDs in Myo21 are essentially required for its predominant localization to the flagellum base, and perhaps also in its involvement in the flagellum assembly and cell division. Possible role of UBLDs in involvement of Myo21 during Leishmania flagellum assembly and cell cycle is discussed.


Assuntos
Flagelos/metabolismo , Leishmania donovani/fisiologia , Miosinas/química , Miosinas/metabolismo , Actinas/metabolismo , Ciclo Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Miosinas/genética , Domínios Proteicos , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Vesículas Transportadoras/metabolismo , Ubiquitina/metabolismo
17.
Drug Des Devel Ther ; 14: 1307-1317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280200

RESUMO

INTRODUCTION: Leishmaniasis is a collective term used to describe various pathological conditions caused by an obligate intracellular protozoan of the genus Leishmania. It is one of the neglected diseases and has been given minimal attention by drug discovery and development stakeholders to narrow the safety and efficacy gaps of the drugs currently used to treat leishmaniasis. The challenge is further exacerbated by the emergence of drug resistance by the parasites. METHODS: Aiming to look for potential anti-leishmanial hits and leads, we screened Medicines for Malaria Venture (MMV) Pathogen Box compounds against clinically isolated Leishmania donovani strain. In this medium-throughput primary screening assay, the compounds were screened against promastigotes, and then against amastigote stages. RESULTS: From the total 400 compounds screened, 35 compounds showed >50% inhibitory activity on promastigotes in the initial screen (1 µM). Out of these compounds, nine showed >70% inhibition, with median inhibitory concentration (IC50) ranging from 12 to 491 nM using the anti-promastigote assay, and from 53 to 704 nM using the intracellular amastigote assay. Identified compounds demonstrated acceptable safety profiles on THP-1 cell lines and sheep red blood cells, and had appropriate physicochemical properties suitable for further drug development. Two compounds (MMV690102 and MMV688262) were identified as leads. The anti-tubercular agent MMV688262 (delamanid) showed a synergistic effect with amphotericin B, indicating the prospect of using this compound for combination therapy. CONCLUSION: The current study indicates the presence of additional hits which may hold promise as starting points for anti-leishmanial drug discovery and in-depth structure-activity relationship studies.


Assuntos
Antiprotozoários/farmacologia , Inibidores do Crescimento/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Malária/tratamento farmacológico , Adolescente , Animais , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Inibidores do Crescimento/química , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/isolamento & purificação , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
18.
PLoS Negl Trop Dis ; 14(4): e0008188, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275665

RESUMO

Leishmaniasis is one of the Neglected Tropical Diseases (NTDs) which is closely associated with poverty and has gained much relevance recently due to its opportunistic coinfection with HIV. It is a protozoan zoonotic disease transmitted by a dipteran Phlebotomus, Lutzomyia/ Sergentomyia sandfly; during blood meals on its vertebrate intermediate hosts. It is a four-faceted disease with its visceral form being more deadly if left untreated. It is endemic across the tropics and sub-tropical regions of the world. It can be considered the third most important NTD after malaria and lymphatic filariasis. Currently, there are numerous drawbacks on the fight against leishmaniasis which includes: non-availability of vaccines, limited availability of drugs, high cost of mainstay drugs and parasite resistance to current treatments. In this study, we screened the antileishmanial activity, selectivity, morphological alterations, cell cycle progression and apoptotic potentials of six Pathogen box compounds from Medicine for Malaria Venture (MMV) against Leishmania donovani promastigotes and amastigotes. From this study, five of the compounds showed great promise as lead chemotherapeutics based on their high selectivity against the Leishmania donovani parasite when tested against the murine mammalian macrophage RAW 264.7 cell line (with a therapeutic index ranging between 19-914 (promastigotes) and 1-453 (amastigotes)). The cell cycle progression showed growth arrest at the G0-G1 phase of mitotic division, with an indication of apoptosis induced by two (2) of the pathogen box compounds tested. Our findings present useful information on the therapeutic potential of these compounds in leishmaniasis. We recommend further in vivo studies on these compounds to substantiate observations made in the in vitro study.


Assuntos
Antiprotozoários/farmacologia , Desenvolvimento de Medicamentos , Leishmania donovani/efeitos dos fármacos , Anfotericina B/farmacologia , Animais , Apoptose/efeitos dos fármacos , Concentração Inibidora 50 , Cinética , Leishmania donovani/crescimento & desenvolvimento , Macrófagos/parasitologia , Camundongos , Microscopia de Fluorescência , Células RAW 264.7
19.
Parasit Vectors ; 13(1): 94, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085719

RESUMO

BACKGROUND: New therapeutic drugs are urgently needed against visceral leishmaniasis because current drugs, such as pentavalent antimonials and miltefosine, produce severe side effects and development of resistance. Whether cyclosporine A (CsA) and its derivatives can be used as therapeutic drugs for visceral leishmaniasis has been controversial for many years. METHODS: In this study, we evaluated the efficacy of CsA and its derivative, dihydrocyclosporin A (DHCsA-d), against promastigotes and intracellular amastigotes of Leishmania donovani. Sodium stibogluconate (SSG) was used as a positive control. RESULTS: Our results showed that DHCsA-d was able to inhibit the proliferation of L. donovani promastigotes (IC50: 21.24 µM and 12.14 µM at 24 h and 48 h, respectively) and intracellular amastigotes (IC50: 5.23 µM and 4.84 µM at 24 and 48 h, respectively) in vitro, but CsA treatment increased the number of amastigotes in host cells. Both DHCsA-d and CsA caused several alterations in the morphology and ultrastructure of L. donovani, especially in the mitochondria. However, DHCsA-d showed high cytotoxicity towards cells of the mouse macrophage cell line RAW264.7, with CC50 values of 7.98 µM (24 h) and 6.65 µM (48 h). Moreover, DHCsA-d could increase IL-12, TNF-α and IFN-γ production and decrease the levels of IL-10, IL-4, NO and H2O2 in infected macrophages. On the contrary, CsA decreased IL-12, TNF-α, and IFN-γ production and increased the levels of IL-10, IL-4, NO and H2O2 in infected macrophages. The expression of L. donovani cyclophilin A (LdCyPA) in promastigotes and intracellular amastigotes and the expression of cyclophilin A (CyPA) in RAW 264.7 cells were found to be significantly downregulated in the CsA-treated group compared to those in the untreated group. However, no significant changes in LdCyPA and CyPA levels were found after DHCsA-d or SSG treatment. CONCLUSIONS: Our findings initially resolved the dispute regarding the efficacy of CsA and DHCsA-d for visceral leishmaniasis treatment. CsA showed no significant inhibitory effect on intracellular amastigotes. DHCsA-d significantly inhibited promastigotes and intracellular amastigotes, but it was highly cytotoxic. Therefore, CsA and DHCsA-d are not recommended as antileishmanial drugs.


Assuntos
Antiprotozoários/farmacologia , Ciclosporina/farmacologia , Ciclosporinas/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-2/imunologia , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/fisiologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Células RAW 264.7
20.
Amino Acids ; 52(2): 261-274, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30993465

RESUMO

Polyamines are metabolites that play important roles in rapidly proliferating cells, and recent studies have highlighted their critical nature in Leishmania parasites. However, little is known about the function of polyamines in parasites. To address this question, we assessed the effect of polyamine depletion in Leishmania donovani mutants lacking ornithine decarboxylase (Δodc) or spermidine synthase (Δspdsyn). Intracellular putrescine levels depleted rapidly in Δodc mutants and accumulated in Δspdsyn mutants, while spermidine levels were maintained at low but stable levels in both cell lines. Putrescine depletion in the Δodc mutants led to cell rounding, immediate cessation of proliferation, and loss of viability, while putrescine-rich Δspdsyn mutants displayed an intermediate proliferation phenotype and were able to arrest in a quiescent-like state for 6 weeks. Supplementation of Δodc mutants with spermidine had little effect on cell proliferation and morphology but enabled parasites to persist for 14 weeks. Thus, putrescine is not only essential as precursor for spermidine formation but also critical for parasite proliferation, morphology, and viability.


Assuntos
Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Putrescina/metabolismo , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Leishmania donovani/enzimologia , Leishmania donovani/genética , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...